Stabilization of Precursor Solution and Perovskite Layer by Addition of Sulfur

Publication Year
2019

Type

Journal Article
Abstract
Abstract Efficient perovskite solar cells (PSCs) are mainly fabricated by a solution coating processes. However, the efficiency of such devices varies significantly with the aging time of the precursor solution used to fabricate them, which includes a mixture of perovskite components, especially methylammonium (MA), and formamidinium (FA) cations. Herein, how the inorganic–organic hybrid perovskite precursor solution of (FAPbI3)0.95(MAPbBr3)0.05 degrades over time and how such degradation can be effectively inhibited is reported on, and the associated mechanism of degradation is discussed. Such degradation of the precursor solution is closely related to the loss of MA cations dissolved in the FA solution through the deprotonation of MA to volatile methylamine (CH3NH2). Addition of elemental sulfur (S8) drastically stabilizes the precursor solution owing to amine–sulfur coordination, without compromising the power conversion efficiency (PCE) of the derived PSCs. Furthermore, sulfur introduced to stabilize the precursor solution results in improved PSC stability.
Journal
Advanced Energy Materials
Volume
9
Issue
17
Pages
1803476